The restricted consistency property of leave-nv-out cross-validation for high-dimensional variable selection

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models

The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study the properties of several Bayesian leave-one-out (LOO) crossvalidation approximations that in most cases...

متن کامل

On The Value of Leave-One-Out Cross-Validation Bounds

A long-standing problem in classification is the determination of the regularization parameter. Nearly every classification algorithm uses a parameter (or set of parameters) to control classifier complexity. Crossvalidation on the training set is usually done to determine the regularization parameter(s). [1] proved a leave-one-out cross-validation (LOOCV) bound for a class of kernel classifiers...

متن کامل

High Dimensional Variable Selection.

This paper explores the following question: what kind of statistical guarantees can be given when doing variable selection in high dimensional models? In particular, we look at the error rates and power of some multi-stage regression methods. In the first stage we fit a set of candidate models. In the second stage we select one model by cross-validation. In the third stage we use hypothesis tes...

متن کامل

On the Consistency of Bayesian Variable Selection for High Dimensional Binary Regression and Classification

Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. We use a...

متن کامل

the test for adverse selection in life insurance market: the case of mellat insurance company

انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2019

ISSN: 1017-0405

DOI: 10.5705/ss.202015.0394